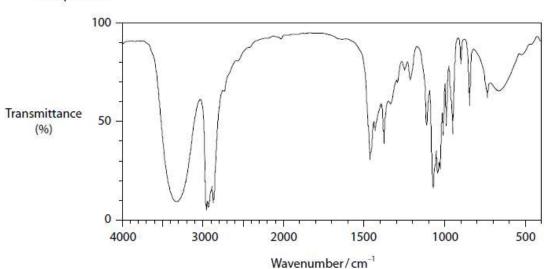
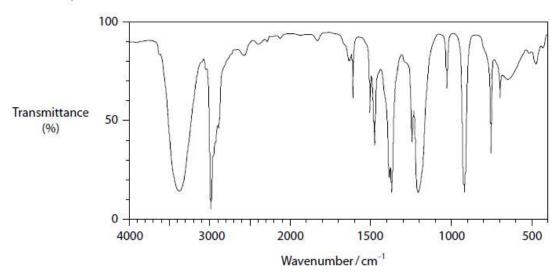

Alcohols - Questions by Topic

Q1.

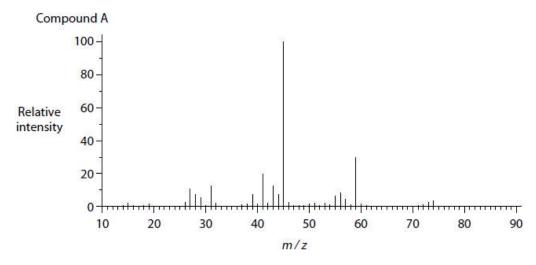

Three compounds, A, B and C, each have the same molecular formula $C_4H_{10}O$ and are known to be alcohols.

(a) The infrared spectra of compounds A, B and C are shown.

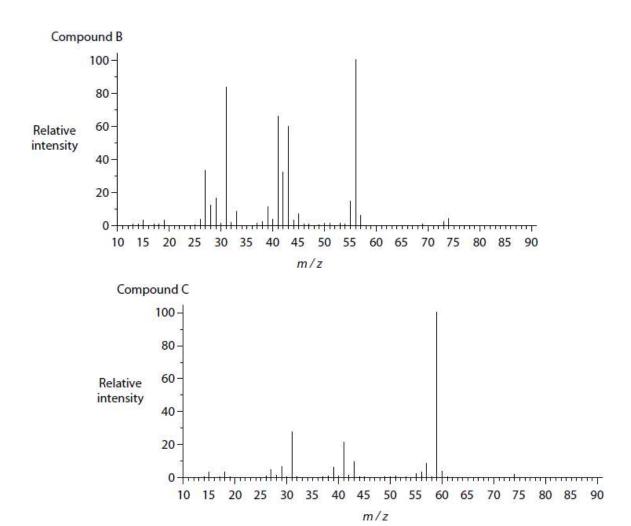

Compound A

Compound B

Compound C


(i) Identify one feature, common to all three infrared spectra, which shows that A, B and C are all alcohols.

		(1)


(ii) State, giving a reason for your answer, if it is possible to identify each of these three alcohols on the basis of the infrared spectra alone.

(b) The mass spectra of the compounds A, B and C are shown.

(1)

(i) Identify one feature common to the mass spectra of compounds A, B and C which shows that the molecular formula is $C_4H_{10}O$.

(T)

(ii) Using the fragmentation patterns, a student proposed that:

compound A is butan-2-ol compound B is butan-1-ol compound C is 2-methylpropan-2-ol

State how the appearance in the spectra of the following peaks supports the student's conclusion.

	(3)
the fragment causing the peak at $m/z = 45$ for compound A	

the frag	gment causing	the peak at $m/z = 31$ for	compound B	
the frag	gment causing	the peak at $m/z = 59$ for	compound C	
	ith potassium		ls A and B, the student decided to mix eaclesulfuric acid solutions, and then distil the	
		and structural formula, th dation reactions.	e organic compound present at the conclu	sion of
				(3)
	Organic compound used	Name of oxidation product	Structural formula of oxidation product	
	A, butan-2-ol			
	B, butan-1-ol			
	identify A and l kidation produc		at one further chemical test should be used	d on
	suitable reager dation products		ions that could be used to distinguish betw	een
				(3)

(Total for question = 12 marks)

Q2.

Which of the following compounds could be oxidised to a carboxylic acid by refluxing with potassium dichromate(VI) and dilute sulfuric acid?

(Total for question = 1 mark)

Q3.

2-methylpropan-1-ol has the skeletal formula:

(a) 2-methy propan-1-ol can be converted to 1-bromo-2-methylpropane.

Give the reagents and conditions used for this reaction.

Reagents

Conditions

(b) 1-bromo-2-methylpropane can be converted back to 2-methylpropan-1-ol by heating with aqueous alkali. A student suggested the following mechanism for the reaction.

Identify and correct the three mistakes in the mechanism shown.

(3
 •••••

(c) 1-bromo-2-methylpropane can be converted to 2-methylpropene.

Give the reagents and conditions used for this reaction.

Reagents (2)

	(Total for question = 7 marks)
Conditions	